4.5 Article

Coupling of surface water and groundwater nitrate-N dynamics in two permeable agricultural catchments

Journal

JOURNAL OF AGRICULTURAL SCIENCE
Volume 152, Issue -, Pages S107-S124

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0021859614000021

Keywords

-

Funding

  1. Irish Department of Agriculture, Food
  2. Marine

Ask authors/readers for more resources

The current study investigated the coupling of groundwater and surface water nitrogen (N) dynamics over 3 years, and considered intensive agricultural land-management influences over this period where the risk of N loss to water was considered high. Groundwater N (as nitrate) was monitored monthly in different strata and zones in four hillslopes, two in each of two agricultural catchments of c. 10 km(2), and stream water N flux was monitored subhourly in the catchment outlets. Field nutrient sources were connected to surface water via groundwater; the groundwater along hillslopes was seen to be influenced spatially and temporally by management, geology and weather as observed in the concentration variability of nitrate in groundwater. Based on spatio-temporal averages of nitrate-N concentration, groundwater status was considered good (at least below a maximum acceptable concentration (MAC) of 11.3 mg/l). However, zones coincident with land-use change (ploughing and reseeding, typical of a management event in intensive landscapes), showed high spatio-temporal variability in nitrate-N concentration, exceeding the MAC temporarily, before recovering. This spatio-temporal variability highlighted the need for insight into these differences when interpreting groundwater quality data from a limited number of basinscale sampling points and occasions. In both catchments the 3-year mean nitrate-N concentration in stream water was similar to the spatio-temporal mean concentration in groundwater. The magnitude and variability of loads, however, were more related to changes in annual runoff rather than changes in annual groundwater nitrate-N status. In one wet year, nitrate-N loads exceeded 48 kg/ha froman Arable catchment and 45 kg/ha from a grassland catchment (close to double the loss in a dry year).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available