4.5 Article

Yield and grain quality of wheat in response to increased temperatures at key periods for grain number and grain weight determination: considerations for the climatic change scenarios of Chile

Journal

JOURNAL OF AGRICULTURAL SCIENCE
Volume 151, Issue 2, Pages 209-221

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0021859612000639

Keywords

-

Funding

  1. Chilean Technical and Scientific Research Council (CONICYT)
  2. FONDECYT (CONICYT) [1040125]

Ask authors/readers for more resources

Agricultural systems are challenged by global climatic change in a scenario of increasing food demand by a growing population. The increase in average temperature will be the main environmental factor affecting the crop development and productivity worldwide, although changes in carbon dioxide (CO2) concentration and rainfall are also expected. Global warming in the range of moderately high temperatures (15-32 degrees C) is projected for temperate environments such as that of central-southern Chile, where grain crops such as wheat are widely grown. The present study assessed the impact of moderately high temperatures on both yield and quality traits of wheat during key stages for grain number and grain weight determination. Two cultivars of spring wheat (Pandora INIA and Huayun INIA) were grown under field conditions during two cropping seasons (2006/07 and 2007/08) under different thermal regimes, consisting of a combination of three temperatures (a control at ambient temperature and two increased temperature treatments, ranging from 2.6 to 11.7 degrees C above the control) and two (3-15 and 20-32 days after anthesis) or three (booting to anthesis (Bo-At), 3-15 and 20-32 days after anthesis) timing regimes. The data recorded showed that the extent of yield reduction was strongly dependent on the timing of the heat treatments. Increased temperature at pre- (Bo-At) or early post-anthesis (3-15 days after anthesis) affected grain yield the most (reducing it by 8-30%). In light of these results, yield reductions of up to 18% can be expected when the crop undergoes average temperature increase of 2.8 degrees C at Bo-At. In this study, the negative effect of increasing temperature on grain yield was associated with both grain number and grain weight reductions; however, different sensitivities to higher temperatures were found between cultivars. Although protein concentration of grains was not affected by higher temperatures, other negative effects on industrial quality traits are important, considering the impact of thermal treatments on grain size of both cultivars.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available