4.5 Article

Variability within cotton cultivars for yield, fibre quality and physiological traits

Journal

JOURNAL OF AGRICULTURAL SCIENCE
Volume 146, Issue -, Pages 483-490

Publisher

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0021859608007867

Keywords

-

Funding

  1. European Social Fund & National Resources - EPEAEK II - PYTHAGORAS II

Ask authors/readers for more resources

Selection within elite cotton cultivars is ineffective; it is believed that they are genetically homogeneous. Research in other crops, however, has verified significant intra-cuitivar variation based either on phenotypic differentiation or molecular analysis techniques. The present study primarily investigated possible intra-cultivar variation for seedcotton yield. Honeycomb selection within three elite cotton cultivars, on the basis of single-plant seedcotton yield and under the ultra-low density of 1.2 plants/m(2), was performed. From each cultivar, six selfed (hand-pollinated) plants were selected and seed of each selected plant constituted a separate line. The 18 first generation lines were evaluated in three locations at a density of 1.2 plants/m(2). Within each line, the 10 selfed plants which yielded the highest were selected. Mixed seed from these selected plants constituted the respective second generation line. Offspring performance of the 18 second generation lines was also tested in three locations at a density of 1.2 plants/m(2). The results were indicative of intra-cultivar variation, since significant differentiation between lines of each cultivar was found for seedcotton yield per plant, averaged across two years and three locations. Additionally, significant intra-cultivar variation was found for fibre quality properties (length and micronaire, but not strength and uniformity) averaged across two years in a single location, as well as for physiological traits (leaf carbon isotope discrimination, ash content and K concentration) averaged across two years and three locations. In comparison with the original cultivars the second generation lines had higher seedcotton yields supporting the existence of exploitable genetic variation. The conclusion was that honeycomb selection in the absence of competition could be an effective technique in breeders' seed treatment in order to avoid gradual degeneration and beneficially exploit any latent or newly developed genetic variation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available