4.1 Article

Bayesian spatial modeling of data from avian point count surveys

Publisher

SPRINGER
DOI: 10.1198/108571108X311563

Keywords

binomial counts; CAR models; detection histories; detection probability; MCMC; population density estimation

Ask authors/readers for more resources

We present a unified framework for modeling bird survey data collected at spatially replicated survey sites in the form of repeated counts or detection history counts, through which we model spatial dependence in bird density and variation in detection probabilities due to changes in covariates across the landscape. The models have a complex hierarchical structure that makes them suited to Bayesian analysis using Markov chain Monte Carlo (MCMC) algorithms. For computational efficiency, we use a form of conditional autogressive model for modeling spatial dependence. We apply the models to survey data for two bird species in the Great Smoky Mountains National Park. The algorithms converge well for the more abundant and easily detected of the two species, but some simplification of the spatial model is required for convergence for the second species. We show how these methods lead to maps of estimated relative density which are an improvement over those that would follow from past approaches that ignored spatial dependence. This work also highlights the importance of good survey design for bird species mapping studies.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available