4.7 Article

Analysis of the Metabolites of Isorhamnetin 3-O-Glucoside Produced by Human Intestinal Flora in Vitro by Applying Ultraperformance Liquid Chromatography/Quadrupole Time-of-Flight Mass Spectrometry

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 62, Issue 12, Pages 2489-2495

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf405261a

Keywords

isorhamnetin 3-O-glucoside; human intestinal microbiota; metabolites; UPLC/Q-TOF-MS; metabolic pathway; polyphenols

Funding

  1. National Basic Research Program of China (973 Program) [2011CB505300, 2011CB505303]
  2. National Natural Science Foundation of China [81072996, 81102743]
  3. Jiangsu Province Colleges and Universities Natural Science Major Basic Research Projects [10KJA360039]
  4. Construction Project for Jiangsu Key Laboratory for High Technology Research of TCM Formulae [BM2010576]

Ask authors/readers for more resources

Isorhamnetin 3-O-glucoside, which is widely contained in many vegetables and rice, is expected to be metabolized by intestinal microbiota after digestion, which brings about the profile of its pharmacological effect. However, little is known about the interactions between this active ingredient and the intestinal flora. In this study, the preculture bacteria and GAM (general anaerobic medium) broth with isorhamnetin 3-O-glucoside were mixed for 48 h of incubation. Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for analysis of the metabolites of isorhamnetin 3-O-glucoside in the corresponding supernatants of fermentation. The parent and five metabolites were found and preliminarily identified on the basis of the chromatograms and characteristics of their protonated ions. Four main metabolic pathways, including deglycosylation, demethoxylation, dehydroxylation, and acetylation, were summarized to explain how the metabolites were converted. Acetylated isorhamnetin 3-O-glucoside and kaempferol 3-O-glucoside were detected only in the sample of Escherichia sp. 12, and quercetin existed only in the sample of Escherichia sp. 4. However, the majority of bacteria could metabolize isorhamnetin 3-O-glucoside to its aglycon isorhamnetin, and then isorhamnetin was degraded to kaempferol. The metabolic pathway and the metabolites of isorhamnetin 3-O-glucoside yielded by different isolated human intestinal bacteria were investigated for the first time. The results probably provided useful information for further in vivo metabolism and active mechanism research on isorhamnetin 3-O-glucoside.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available