4.7 Article

Tissue-Specific and Developmental Modifications of Grape Cell Walls Influence the Adsorption of Proanthocyanidins

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 60, Issue 36, Pages 9249-9260

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf301552t

Keywords

proanthocyanidin; tannin; lignin; grape; ripening; cell wall; polysaccharide; arabinogalactan; pectin; porosity

Funding

  1. Grape and Wine Research and Development Corporation
  2. Australian government

Ask authors/readers for more resources

Cell wall material from Vitis vinifera L. cv. Cabernet Sauvignon grape skin and flesh was isolated at different stages of grape maturity to determine whether developmental changes in cell wall composition in different tissue types influence the binding of proanthocyanidins (PAs). Trends in cell wall adsorption of, and selectivity for, PM were determined using two skin PM that differed in their average molecular masses. Flesh cell walls consistently bound a higher amount of PA than those from skin. Key structural differences that reduced PA adsorption in skin cell walls by comparison with flesh cell walls were endogenously higher concentrations of insoluble PA, Klason lignin, and lower cell wall-bound protein. These differences may confer reduced flexibility and porosity of skin cell walls relative to flesh cell walls. Analysis of skin and flesh cell wall properties revealed that the onset of ripening was associated with a loss of type I arabinogalactan and galacturonic acid, which indicated a degradation of pectin within the cell wall. Flesh cell walls consistently bound PM of larger molecular mass, and changes in PA adsorption properties after the onset of ripening were minor. For skin cell walls, adsorption of PA was lowest immediately following solubilization of galacturonic acid, and high molecular mass PAs were poorly bound. As ripening progressed, PAs of higher molecular mass were selectively adsorbed by skin cell walls, which indicates that ongoing cell wall remodeling during ripening may confer an increased porosity within the skin cell wall matrix, resulting in a greater adsorption of PA within a permeable structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available