4.8 Article

Double-Well Ultracold-Fermions Computational Microscopy: Wave-Function Anatomy of Attractive-Pairing and Wigner-Molecule Entanglement and Natural Orbitals

Journal

NANO LETTERS
Volume 15, Issue 10, Pages 7105-7111

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.nanolett.5b03199

Keywords

Ultracold atoms; double-well nano confinement; Wigner molecule; configuration interaction; entanglement; strongly correlated matter; natural orbitals

Funding

  1. Air Force Office for Scientific Research under AFOSR Award [FA9550-14-1-0005]

Ask authors/readers for more resources

Bottom-up approaches to the many-body physics of fermions have recently demonstrated precise number and site-resolved preparations with tunability of interparticle interactions in single-well, SW, and double-well, DW, nanoscale confinements created by manipulating ultracold fermionic atoms 4.1 with optical tweezers. These experiments emulate an analogue-simulator mapping onto the requisite microscopic Hamiltonian, approaching realization of Feynmans' vision of quantum simulators that will do exactly the same as nature. Here we report on exact benchmark configuration-interaction computational microscopy solutions of the Hamiltonian, uncovering the spectral evolution, wave function anatomy, and entanglement properties of the interacting fermions in the entire parameter range, including crossover from an SW to a DW confinement and a controllable energy imbalance between the wells. We demonstrate attractive pairing and formation of repulsive, highly correlated, ultracold Wigner molecules, well-described in the natural orbital representation. The agreement with the measurements affirms the henceforth gained deep insights into ultracold molecules and opens access to the size-dependent evolution of nanoclustered and condensed-matter phases and ultracold-atoms quantum information.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available