4.7 Article

Effect of Bioactive Dietary Polyphenols on Zinc Transport across the Intestinal Caco-2 Cell Monolayers

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 59, Issue 8, Pages 3606-3612

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf104260j

Keywords

zinc; iron; epigallocatechin-3-gallate (EGCG); grape seed extract; green tea extract; Caco-2 cells

Funding

  1. College of Human and Health Development at the Pennsylvania State University
  2. NIH [AT005006]

Ask authors/readers for more resources

Polyphenolic compounds are known to possess many beneficial health effects, including the antioxidative activities of scavenging reactive oxygen species and chelating metals, such as iron and zinc. Tea and red wine are thought to be important sources of these compounds. However, some polyphenolic compounds can also reduce the absorption of iron, and possibly other trace metals, when included in a diet. There is very little information on the effect of dietary polyphenolic compounds on the status of trace elements other than iron. The effects of epigallocatechin-3-gallate (EGCG), green tea extract (GT), and grape seed extract (GSE) on the absorption of Zn-65 were examined and compared with their effects on Fe-55 absorption in human intestinal Caco-2 cells grown on microporous membrane inserts. The levels of EGCG, GT, and GSE used in this study were within physiological ranges and did not affect the integrity of the Caco-2 cell monolayers. GSE significantly (P < 0.05) reduced zinc transport across the cell monolayer, and the decreased zinc transport was associated with a reduction in apical zinc uptake. However, EGCG and GT did not alter zinc absorption. In contrast, the polyphenolic compounds in EGCG, GT, and GSE almost completely blocked transepithelial iron transport across the cell monolayer. The effect of GSE on zinc absorption was very different from that on iron absorption. Whereas GSE decreased zinc absorption by reducing apical zinc uptake, the polyphenolic compounds inhibited iron absorption by enhancing apical iron uptake. GSE inhibited zinc absorption similarly to that observed for phytate. Phytate significantly (P < 0.05) decreased transepithelial zinc transport by reducing apical zinc uptake. The inhibition of zinc absorption may be due to the presence of procyanidins in GSE, which bind zinc with high affinity and block the transport of zinc across the apical membrane of enterocytes. Further research on the absorption of zinc as zinc-polyphenol complexes and free zinc should provide further insight into the process of dietary zinc absorption in the presence of GSE and other bioactive dietary polyphenols. The present study suggests that some individuals should consider their zinc status if they regularly consume procyanidin-containing foods in their diet. However, further studies, especially in vivo studies, are needed to confirm these results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available