4.7 Article

Indoleamine 2,3-Dioxygenase, an Immunomodulatory Protein, Is Suppressed by (-)-Epigallocatechin-3-gallate via Blocking of γ-Interferon-Induced JAK-PKC-δ-STAT1 Signaling in Human Oral Cancer Cells

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 58, Issue 2, Pages 887-894

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf903377e

Keywords

IDO; EGCG; IFN-gamma; STAT1; human oral cancer

Funding

  1. National Science Council (NSC) [97-2320-B-039-008-MY3]
  2. China Medical University [CMU96-059, CMU97-2741]

Ask authors/readers for more resources

Immune escape is a characteristic of cancer progression, but its underlying molecular mechanism is still poorly understood. An immunomodulatory protein, indoleamide 2,3-dioxygenase (IDO), is induced by gamma-interferon (IFN-gamma) in several immune cells; those cells are observed in cancer cell microenvironment and can enhance immune escape. Previous studies show that IDO is expressed in the process of tumor formation and associated with cancer cell immune tolerance. By locally degrading tryptophan, IDO inhibits the proliferation of T lymphocytes and induces T cell apoptosis, leading to suppression of T cell response. In this study, (-)-epigallocatechin-3-gallate (EGCG), the major constituent of green tea, is found to significantly inhibit the expression of IDO in human oral cancer cell lines. EGCG suppresses the induction of IDO at transcriptional level. Activation of STAT1 is discovered to play an important role in regulating IDO expression by IFN-gamma. The study results demonstrate that EGCG can inhibit translocation of STAT1 into nucleus in IFN-gamma-stimulated human oral cancer cells. In addition, both tyrosine. and serine phosphorylation of STAT1 are to be suppressed by EGCG. Moreover, phosphorylation of PKC-delta, JAK-1, and JAK-2, which are the upstream event for the activation of STAT1, are also inhibited by EGCG in IFN-gamma-stimulated human oral cancer cells. These data show that EGCG inhibited IDO expression by blocking the IFN-gamma-induced JAK-PKC-delta-STAT1 signaling pathway. This study indicates that EGCG is a potential drug for immune and target therapy to enhance cancer therapy by increasing antitumor immunity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available