4.7 Article

Polyphenolic Compounds from Salvia Species Protect Cellular DNA from Oxidation and Stimulate DNA Repair in Cultured Human Cells

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 58, Issue 12, Pages 7465-7471

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf100082p

Keywords

Chemoprevention; DNA damage; DNA repair; sage water extracts; polyphenolic compounds

Funding

  1. Foundation for Science and Technology, Portugal [SFRH/BD/35672/2007]
  2. Fundação para a Ciência e a Tecnologia [SFRH/BD/35672/2007] Funding Source: FCT

Ask authors/readers for more resources

DNA damage can lead to carcinogenesis if replication proceeds without proper repair. This study evaluated the effects of the water extracts of three Salvia sp., Salvia officinalis (SO), Salvia fruticosa (SF), and Salvia lavandulifolia (SL), and of the major phenolic constituents, rosmarinic acid (RA) and luteolin-7-glucoside (L-7-G), on DNA protection in Caco-2 and HeLa cells exposed to oxidative agents and on DNA repair in Caco-2 cells. The comet assay was used to measure DNA damage and repair capacity. The final concentration of each sage extract was 50 mu g/mL, and concentrations of RA and L-7-G were 50 and 20 mu M, respectively. After a short incubation (2 h), L-7-G protected DNA in Caco-2 cells from damage induced by H2O2 (75 mu M); also, after a long incubation (24 h), SF, RA, and L-7-G had protective effects in Caco-2 cells. In HeLa cells, SO, SF, and RA protected against damage induced by H2O2 after 24 h of incubation. Assays of DNA repair show that SO, SF, and L-7-G increased the rate of DNA repair (rejoining of strand breaks) in Caco-2 cells treated with H2O2. The incision activity of a Caco-2 cell extract on a DNA substrate containing specific damage (8-oxoGua) was also measured to evaluate effects on base excision repair (BER) activity. Preincubation for 24 h with SO and L-7-G had a BER inductive effect, increasing incision activity in Caco-2 cells. In conclusion, SO, SF, and the isolated compounds (RA and L-7-G) demonstrated chemopreventive activity by protecting cells against oxidative DNA damage and stimulating DNA repair (SO, SF, and L-7-G).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available