4.7 Article

Effect of Malaxation Conditions on Phenol and Volatile Profiles in Olive Paste and the Corresponding Virgin Olive Oils (Olea europaea L. Cv. Cornicabra)

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 57, Issue 9, Pages 3587-3595

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf803505w

Keywords

Virgin olive oil; olive paste; phenols; volatiles; malaxation temperature; malaxation time

Funding

  1. Junta de Comunidades de Castilla-La Mancha [PBI05-047]

Ask authors/readers for more resources

Malaxation of olive paste must be considered to be much more than a simple physical separation, because a complex bioprocess takes place that is very relevant to the quality and composition of the final product. A combined study of the effect of kneading temperature and time on the minor composition of olive paste and its corresponding virgin olive oil, processed in an experimental oil mill (Pieralisi, Fattoria) with a working capacity of 200 kg/h, is reported. A large drop in the oleuropein content in the olive paste with respect to its initial content in the olive fruit (between 92 and 96%) was observed, which suggested its almost total degradation during the crushing operation. The major phenolic compound found in the olive paste during kneading was the dialdehydic form of elenolic acid linked to hydroxytyrosol (3,4-DHPEA-EDA, always higher than 60% of the total phenols). This greatly decreased during malaxation (from 5505 to 2317 mg/kg, on average). The content of phenolic compounds in virgin olive oil was much more affected by the malaxation temperature than the kneading time. For instance, the 3,4-DHPEA-EDA content increased by 220-630% in the two batches when the temperature was increased from 20 to 40 degrees C. A reduction in the C6 aldehydes was found in virgin olive oil as the malaxation temperature increased, especially in E-2-hexenal (30% reduction). In contrast, C6 aldehydes in the oils from the oil mill plant significantly increased as the malaxation time increased from 30 to 90 min, chiefly E-2-hexenal (about a 70% increase).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available