4.7 Article

18O Stable Isotope Labeling, Quantitative Model Experiments, and Molecular Dynamics Simulation Studies on the Trans-Specific Degradation of the Bitter Tasting Iso-α-acids of Beer

Journal

JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY
Volume 57, Issue 22, Pages 11014-11023

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/jf903000c

Keywords

Iso-alpha-acids; tricyclocohumol; tricyclocohumene; isotricyclocohumene; tetracyclocohumol; epitetracyclocohumol; stable isotope labeling

Ask authors/readers for more resources

The typical bitterness of fresh beer is well-known to decrease in intensity and to change in quality with increasing age. This phenomenon was recently shown to be caused by the conversion of bitter tasting trans-iso-alpha-acids into lingering and harsh bitter tasting tri- and tetracyclic degradation products such as tricyclocohumol, tricyclocohumene, isotricyclocohumene, tetracyclocohumol, and epitetracyclocohumol. Interestingly, the formation of these compounds was shown to be trans-specific and the corresponding cis-iso-alpha-acids were found to be comparatively stable. Application of O-18 stable isotope labeling as well as quantitative model studies combined with LC-MS/MS experiments, followed by computer-based molecular dynamics simulations revealed for the first time a conclusive mechanism explaining the stereospecific transformation of trans-iso-alpha-acids into the tri- and tetracyclic degradation products. This transformation was proposed to be induced by a proton-catalyzed carbon/carbon bond formation between the carbonyl atom C(1') of the isohexenoyl moiety and the alkene carbon C(2 '') of the isoprenyl moiety of the trans-iso-alpha-acids.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available