4.4 Article

Experimental Validation of the Invariance of Electrowetting Contact Angle Saturation

Journal

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
Volume 26, Issue 12-17, Pages 1909-1930

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/156856111X599580

Keywords

Electrowetting; contact angle; saturation; dielectric

Funding

  1. NSF CAREER Award [0640964]
  2. NSF IHCS Award [1001141]
  3. AFRL [5408-25-SC-0003]
  4. ARL [W9111NF-09-2-0034]

Ask authors/readers for more resources

Basic electrowetting theory predicts that a continued increase in applied voltage will allow contact angle modulation to zero degrees. In practice, the effect of contact angle saturation has always been observed to limit the contact angle modulation, often only down to a contact angle of 60 to 70 degrees. The physical origins of contact angle saturation have not yet been explained successfully and unequivocally. At best, scientists have produced multiple disconnected hypotheses (droplet ejection, charge injection, a thermodynamic limit, etc.) that do not satisfactorily hold for the large body of electrowetting experimental results. Herein we experimentally demonstrate that when using DC voltage, electrowetting contact angle saturation is invariant with electric field, contact line profile, interfacial tension, choice of non-polar insulating fluid, and type of polar conductive fluid or ionic content. The selected experiments were performed and designed using conventional electrowetting materials, without bias toward supporting a particular theory. Because the experimental results show such a strong invariance of saturation angle to multiple parameters, electrowetting saturation parallels many of the trends for Taylor cone formation. However, the contact line geometry is distinct from a Taylor cone, suggesting that some other (though related) form of electrohydrodynamic instability might cause saturation. Although this work does not unequivocally prove what causes contact angle saturation, it reveals what factors play a very limited or no role, and how dominant factors causing saturation may change with time of voltage application. This study thereby provides additional direction to the continued pursuit of a universal theory for electrowetting saturation. (C) Koninklijke Brill NV, Leiden, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available