4.4 Article

Role of Proteins and Water in the Initial Attachment of Mammalian Cells to Biomedical Surfaces: A Review

Journal

JOURNAL OF ADHESION SCIENCE AND TECHNOLOGY
Volume 24, Issue 5, Pages 853-888

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1163/016942409X12598231567907

Keywords

Water; bioadhesion; protein adsorption

Funding

  1. American Chemical Society [44523-AC5]
  2. National Institute of Health [PHS 2R01HL069965]
  3. Materials Research Institute and Departments of Materials Science and Engineering and Bioengineering of the Pennsylvania State University

Ask authors/readers for more resources

Anchorage-dependent mammalian cells are typically grown in vitro on hydrophilic glass and plastic substrata in a medium supplemented with 5-20% v/v blood-serum proteins. Inoculated single cells gravitate from suspension to within close proximity of substrata surfaces whereupon initial contact and attachment occurs followed by progressive cell adhesion, spreading, and ultimately proliferation. A critical examination of the role of proteins and water in the initial attachment phase concludes that the cell attachment phase is not mediated by biological recognition of surface-adsorbed ligands by cell membrane receptors as frequently depicted in various textbook explanations of cell adhesion. This conclusion is based on extensive experimental evidence showing that blood proteins do not adsorb on hydrophilic surfaces that are most conducive to cell growth but do adsorb on hydrophobic surfaces that are not conducive to cell growth. As a consequence, the conventional idea that initial cell attachment is mediated by various adhesin factors adsorbed from serum-protein solutions is viewed as untenable. Rather, it is concluded that the initial contact-and-attachment of cells to hydrophilic surfaces is controlled by physicochemical interactions unrelated to biological recognition. The general physics of these interactions is known but an adequate descriptive theory that can be tested against experimentally measured cell adhesion kinetics has yet to be developed. The role of these physicochemical interactions in stimulating biological machinery within cells to fully adhere and proliferate on surfaces of biotechnical interest is unknown but is of great significance to the science underlying various biomedical and biotechnical applications of materials. (C) Koninklijke Brill NV, Leiden, 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available