4.6 Article

Optimized residual vector quantization for efficient approximate nearest neighbor search

Journal

MULTIMEDIA SYSTEMS
Volume 23, Issue 2, Pages 169-181

Publisher

SPRINGER
DOI: 10.1007/s00530-015-0470-9

Keywords

Approximate nearest neighbor search; Vector quantization; Codebook optimization; Filtration

Funding

  1. National Natural Science Foundation of China (NSFC) [61173114, 61202300, 61272202]

Ask authors/readers for more resources

In this paper, an optimized residual vector quantization-based approach is presented for improving the quality of vector quantization and approximate nearest neighbor search. The main contributions are as follows. Based on residual vector quantization (RVQ), a joint optimization process called enhanced RVQ (ERVQ) is introduced. Each stage codebook is iteratively optimized by the others aiming at minimizing the overall quantization errors. Thus, an input vector is approximated by its quantization outputs more accurately. Consequently, the precision of approximate nearest neighbor search is improved. To efficiently find nearest centroids when quantizing vectors, a non-linear vector quantization method is proposed. The vectors are embedded into 2-dimensional space where the lower bounds of Euclidean distances between the vectors and centroids are calculated. The lower bound is used to filter non-nearest centroids for the purpose of reducing computational costs. ERVQ is noticeably optimized in terms of time efficiency on quantizing vectors when combining with this method. To evaluate the accuracy that vectors are approximated by their quantization outputs, an ERVQ-based exhaustive method for approximate nearest neighbor search is implemented. Experimental results on three datasets demonstrate that our approaches outperform the state-of-the-art methods over vector quantization and approximate nearest neighbor search.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available