4.6 Article

The development of biocomposite nanofibers for tissue scaffolding applications

Journal

JOM
Volume 60, Issue 6, Pages 45-48

Publisher

SPRINGER
DOI: 10.1007/s11837-008-0070-7

Keywords

-

Ask authors/readers for more resources

The last decade has seen significant progress in the production of nanofibers by electrospinning. One of the major drivers to this progress is the potential use of nanofibrous structures as scaffolds for engineering tissues in regenerative medicine. Electrospun fibers (ire capable of emulating the nanofibrous architecture of the native extracellular matrix. The), can potentially provide in-vivo-like nanomechanical and physicochemical signaling cues to the cells to establish apposite cell-scaffold interactions and promote functional changes between and within cells toward synthesis of a genuine extracellular lular matrix over time. In this context, this paper presents a brief overview of a scaffold design strategy. It also presents recent research pertaining to developing biomimetic and bioactive nanofibrous tissue scaffolds through electrospinning biocomposite nanofibers of organic-organic and inorganic-organic hybrids, which are potentially applicable to soft and hard tissue engineering.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available