4.7 Article

The massive end of the stellar mass function

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 454, Issue 4, Pages 4027-4036

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stv2234

Keywords

Galaxy: abundances; Galaxy: evolution; Galaxy: formation

Funding

  1. Alfred P. Sloan Foundation
  2. National Science Foundation
  3. US Department of Energy Office of Science
  4. University of Arizona
  5. Brazilian Participation Group
  6. Brookhaven National Laboratory
  7. University of Cambridge
  8. Carnegie Mellon University
  9. University of Florida
  10. French Participation Group
  11. German Participation Group
  12. Harvard University
  13. Instituto de Astrofisica de Canarias
  14. Michigan State/Notre Dame/JINA Participation Group
  15. Johns Hopkins University
  16. Lawrence Berkeley National Laboratory
  17. Max Planck Institute for Astrophysics
  18. Max Planck Institute for Extraterrestrial Physics
  19. New Mexico State University
  20. New York University
  21. Ohio State University
  22. Pennsylvania State University
  23. University of Portsmouth
  24. Princeton University
  25. Spanish Participation Group
  26. University of Tokyo
  27. University of Utah
  28. Vanderbilt University
  29. University of Virginia
  30. University of Washington
  31. Yale University

Ask authors/readers for more resources

We derive average flux corrections to the Model magnitudes of the Sloan Digital Sky Survey (SDSS) galaxies by stacking together mosaics of similar galaxies in bins of stellar mass and concentration. Extra flux is detected in the outer low surface brightness part of the galaxies, leading to corrections ranging from 0.05 to 0.32 mag for the highest stellar mass galaxies. We apply these corrections to the MPA-JHU (Max-Planck Institute for Astrophysics - John Hopkins University) stellar masses for a complete sample of half a million galaxies from the SDSS survey to derive a corrected galaxy stellar mass function at z = 0.1 in the stellar mass range 9.5 < log (M-*/M-circle dot) < 12.0. We find that the flux corrections and the use of the MPA-JHU stellar masses have a significant impact on the massive end of the stellar mass function, making the slope significantly shallower than that estimated by Li & White, but steeper than derived by Bernardi et al.. This corresponds to a mean comoving stellar mass density of galaxies with stellar masses log (M-*/M-circle dot) >= 11.0 that is a factor of 3.36 larger than the estimate by Li & White, but is 43 per cent smaller than reported by Bernardi et al.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available