4.7 Article

Radio interferometric gain calibration as a complex optimization problem

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 449, Issue 3, Pages 2668-2684

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stv418

Keywords

instrumentation: interferometers; methods: analytical; methods: numerical; techniques: interferometric

Funding

  1. South African Research Chairs Initiative of the Department of Science and Technology
  2. National Research Foundation

Ask authors/readers for more resources

Recent developments in optimization theory have extended some traditional algorithms for least-squares optimization of real-valued functions (Gauss-Newton, Levenberg-Marquardt, etc.) into the domain of complex functions of a complex variable. This employs a formalism called the Wirtinger derivative, and derives a full-complex Jacobian counterpart to the conventional real Jacobian. We apply these developments to the problem of radio interferometric gain calibration, and show how the general complex Jacobian formalism, when combined with conventional optimization approaches, yields a whole new family of calibration algorithms, including those for the polarized and direction-dependent gain regime. We further extend the Wirtinger calculus to an operator-based matrix calculus for describing the polarized calibration regime. Using approximate matrix inversion results in computationally efficient implementations; we show that some recently proposed calibration algorithms such as STEFCAL and peeling can be understood as special cases of this, and place them in the context of the general formalism. Finally, we present an implementation and some applied results of COHJONES, another specialized direction-dependent calibration algorithm derived from the formalism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available