4.7 Article

The long-term evolution of photoevaporating transition discs with giant planets

Journal

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Volume 454, Issue 2, Pages 2173-2182

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/mnras/stv2102

Keywords

hydrodynamics; planet-disc interactions; protoplanetary discs

Funding

  1. International Max Planck Research School (IMPRS)
  2. DFG Cluster of Excellence 'Origin and Structure of the Universe'
  3. NASA - Space Telescope Science Institute [HST-HF2-51346.001-A]
  4. NASA [NAS 5-26555]
  5. DISCSIM project - European Research Council under ERC-ADG [341137]

Ask authors/readers for more resources

Photoevaporation and planet formation have both been proposed as mechanisms responsible for the creation of a transition disc. We have studied their combined effect through a suite of 2D simulations of protoplanetary discs undergoing X-ray photoevaporation with an embedded giant planet. In a previous work, we explored how the formation of a giant planet triggers the dispersal of the inner disc by photoevaporation at earlier times than what would have happened otherwise. This is particularly relevant for the observed transition discs with large holes and high mass accretion rates that cannot be explained by photoevaporation alone. In this work, we significantly expand the parameter space investigated by previous simulations. In addition, the updated model includes thermal sweeping, needed for studying the complete dispersal of the disc. After the removal of the inner disc, the disc is a non-accreting transition disc, an object that is rarely seen in observations. We assess the relative length of this phase, to understand if it is long lived enough to be found observationally. Depending on the parameters, especially on the X-ray luminosity of the star, we find that the fraction of time spent as a non-accretor greatly varies. We build a population synthesis model to compare with observations and find that in general thermal sweeping is not effective enough to destroy the outer disc, leaving many transition discs in a relatively long lived phase with a gas-free hole, at odds with observations. We discuss the implications for transition disc evolution. In particular, we highlight the current lack of explanation for the missing non-accreting transition discs with large holes, which is a serious issue in the planet hypothesis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available