4.6 Article

Hazardous Doping for Photo-Electrochemical Conversion: The Case of Nb-Doped Fe2O3 from First Principles

Journal

MOLECULES
Volume 20, Issue 11, Pages 19900-19906

Publisher

MDPI
DOI: 10.3390/molecules201119668

Keywords

water splitting; Density Functional Theory; DFT plus U; iron oxides; doping

Funding

  1. Morantz Energy Research Fund
  2. Nancy and Stephen Grand Technion Energy Program
  3. I-CORE Program of the Planning and Budgeting Committee
  4. Israel Science Foundation [152/11]

Ask authors/readers for more resources

The challenge of improving the efficiency of photo-electrochemical devices is often addressed through doping. However, this strategy could harm performance. Specifically, as demonstrated in a recent experiment, doping one of the most widely used materials for water splitting, iron(III) oxide (Fe2O3), with niobium (Nb) can still result in limited efficiency. In order to better understand the hazardous effect of doping, we use Density Functional Theory (DFT)+U for the case of Nb-doped Fe2O3. We find a direct correlation between the charge of the dopant, the charge on the surface of the Fe2O3 material, and the overpotential required for water oxidation reaction. We believe that this work contributes to advancing our understanding of how to select effective dopants for materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available