4.5 Review

Fe65 matters: New light on an old molecule

Journal

IUBMB LIFE
Volume 64, Issue 12, Pages 936-942

Publisher

WILEY
DOI: 10.1002/iub.1094

Keywords

neurodegenerative disorders; transcription; DNA damage; cytoskeleton; adaptor proteins

Funding

  1. Associazione Italiana Ricerca sul Cancro, Italy (AIRC)
  2. Italian Ministry of University and Research [PON1_02782]

Ask authors/readers for more resources

The discovery that the main constituents of amyloid deposits, characteristic of Alzheimer neuropathology, derive from the proteolytic processing of the membrane precursor amyloid precursor protein (APP) is one of the milestones of the research history of this disease. Despite years of intense studies, the functions of APP and of its amyloidogenic processing are still under debate. One focus of these studies was the complex network of proteinprotein interactions centered at the cytosolic domain of APP, which suggests the involvement of APP in a lively signaling pathway. Fe65 was the first protein to be demonstrated to interact with the APP cytodomain. Starting from this observation, a large body of data has been gathered, indicating that Fe65 is an adaptor protein, which binds numerous proteins, further than APP. Among these proteins, the crosstalk with Mena, mDab, and Abl suggested the involvement of the Fe65APP complex in the regulation of cell motility, with a relevant role in differentiation and development. Other partners, like the histone acetyltransferase Tip60, indicated the possibility that the nuclear fraction of Fe65 could be involved in gene regulation and/or DNA repair. (C) 2012 IUBMB IUBMB Life, 64(12): 936942, 2012

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available