4.3 Article

Impact of Functionalized Polystyrenes as the Electron Injection Layer on Gold and Aluminum Surfaces: A Combined Theoretical and Experimental Study

Journal

ISRAEL JOURNAL OF CHEMISTRY
Volume 54, Issue 5-6, Pages 779-788

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ijch.201400041

Keywords

amines; density functional theory; electrochemistry; interfaces; polymers; semiconductors

Funding

  1. US Department of Energy [DE-FG02-04ER46165]
  2. NSF CRIF award [CHE-0946869]
  3. Georgia Institute of Technology

Ask authors/readers for more resources

At metal/organic interfaces, the insertion of an organic monolayer can significantly modify the surface properties of the substrate, especially in terms of charge injection across the interface. Herein, we study the formation of an insulating monolayer of morpholine or amine-functionalized polystyrene on Al(111) and Au(111) surfaces and its impact on surface work-function and charge injection. First-principles calculations based on Density Functional Theory have been carried out and point to a significant decrease in the work-function of modified metal surfaces; this is in very good agreement with ultraviolet photoemission spectroscopy measurements performed on the Au(111) surface. In addition, a bilayer cathode, consisting of a thin film of high-work-function metal, such as Al and Au, and a layer of amine-functionalized polystyrene, was also fabricated and tested in organic light-emitting diodes. Such bilayer structures exhibit substantially enhanced efficiency when compared with controls without the functionalized polymers. Our combined theoretical and experimental investigation gives insight into how a thin layer of a commodity polymer can be used to transform rather high-work-function metals into high-performance cathodes to provide efficient electron injection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available