4.7 Article

The impact of dataset selection on land degradation assessment

Journal

Publisher

ELSEVIER
DOI: 10.1016/j.isprsjprs.2018.08.017

Keywords

RESTREND; BFAST; Dryland degradation; NDVI; Trend analysis; AVHRR; GIMMS; TSS-RESTREND

Funding

  1. Australian Research Council (ARC) Centre of Excellence for Climate Extremes [CE170100023]
  2. Australian Postgraduate Award through the University of New South Wales
  3. UNSW Climate Change Research Centre

Ask authors/readers for more resources

Accurate quantification of land degradation is a global need, particularly in the world's dryland areas. However, there is a well-documented lack of field data and long-term observational studies for most of these regions. Remotely sensed data offers the only long-term vegetation record that can be used for land degradation assessment at a national, continental or global scale. Both the rainfall and vegetation datasets used for land degradation assessment contain errors and uncertainties, but little work has been done to understand how this may impact results. This study uses the recently developed Time Series Segmented RESidual TREND (TSS-RESTREND) method applied to six rainfall and two vegetation datasets to assess the impact of dataset selection on the estimates of dryland degradation over Australia. Large differences in the data and methods used to produce the precipitation datasets did not significantly impact results with the estimate of average change varying by < 4% and a single dataset being sufficient to capture the direction of change in > 95% of regions. On the other hand, the vegetation dataset selection had a much greater impact. Calibration errors in the Global Inventory Monitoring and Modeling System Version 3 NDVI (GIMMSv3.0g) dataset caused significant errors in the trends over some of Australia's dryland regions. Though identified over Australia, the problematic calibration in the GIMMSv3.0g dataset may have effected dryland NDVI values globally. These errors have been addressed in the updated GIMMSv3.1g which is strongly recommended for use in future studies. Our analysis suggests that using an ensemble composed of multiple runs performed using different datasets allows for the identification of errors that cannot be detected using only a single run or with the data quality flags of the input datasets. A multi-run ensemble made using different input datasets provides more comprehensive quantification of uncertainty and errors in space and time.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available