4.8 Article

Nitrate competition in a coral symbiosis varies with temperature among Symbiodinium clades

Journal

ISME JOURNAL
Volume 7, Issue 6, Pages 1248-1251

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2013.12

Keywords

nitrogen; coral; symbiosis; temperature; Symbiodinium; stable isotopes

Funding

  1. World Bank/GEF Coral Targeted Research
  2. Coral Disease Working Group
  3. Mario Einaudi Center for Environmental Studies at Cornell University
  4. Cornell University NSF-IGERT program in Biogeochemistry and Environmental Biocomplexity
  5. EPA-STAR
  6. Smithsonian Marine Science Network fellowship
  7. WM Keck Foundation

Ask authors/readers for more resources

Many reef-building corals form symbioses with dinoflagellates from the diverse genus Symbiodinium. There is increasing evidence of functional significance to Symbiodinium diversity, which affects the coral holobiont's response to changing environmental conditions. For example, corals hosting Symbiodinium from the clade D taxon exhibit greater resistance to heat-induced coral bleaching than conspecifics hosting the more common clade C. Yet, the relatively low prevalence of clade D suggests that this trait is not advantageous in non-stressful environments. Thus, clade D may only be able to out-compete other Symbiodinium types within the host habitat when conditions are chronically stressful. Previous studies have observed enhanced photosynthesis and fitness by clade C holobionts at non-stressful temperatures, relative to clade D. Yet, carbon-centered metrics cannot account for enhanced growth rates and patterns of symbiont succession to other genetic types when nitrogen often limits reef productivity. To investigate the metabolic costs of hosting thermally tolerant symbionts, we examined the assimilation and translocation of inorganic N-15 and C-13 in the coral Acropora tenuis experimentally infected with either clade C (sub-type C1) or D Symbiodinium at 28 and 30 degrees C. We show that at 28 degrees C, C1 holobionts acquired 22% more N-15 than clade D. However, at 30 degrees C, C1 symbionts acquired equivalent nitrogen and 16% less carbon than D. We hypothesize that C1 competitively excludes clade D in hospite via enhanced nitrogen acquisition and thus dominates coral populations despite warming oceans.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available