4.8 Article

Vampires in the oceans: predatory cercozoan amoebae in marine habitats

Journal

ISME JOURNAL
Volume 7, Issue 12, Pages 2387-2399

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2013.116

Keywords

BioMarKs; environmental clones; Penardia; SSU rDNA; Thalassomyxa; Vampyrellida

Funding

  1. NERC [NE/H009426/1, NE/H000887/1]
  2. French ANR [ANT-08-BDVA-003]
  3. EU-FP7 ERA-net program BiodivERsA, under the project BioMarKs [2008-6530]
  4. NERC [NE/H000887/1, NE/H009426/1] Funding Source: UKRI
  5. Natural Environment Research Council [NE/H009426/1, NE/H000887/1] Funding Source: researchfish

Ask authors/readers for more resources

Vampire amoebae (vampyrellids) are predators of algae, fungi, protozoa and small metazoans known primarily from soils and in freshwater habitats. They are among the very few heterotrophic naked, filose and reticulose protists that have received some attention from a morphological and ecological point of view over the last few decades, because of the peculiar mode of feeding of known species. Yet, the true extent of their biodiversity remains largely unknown. Here we use a complementary approach of culturing and sequence database mining to address this issue, focusing our efforts on marine environments, where vampyrellids are very poorly known. We present 10 new vampyrellid isolates, 8 from marine or brackish sediments, and 2 from soil or freshwater sediment. Two of the former correspond to the genera Thalassomyxa Grell and Penardia Cash for which sequence data were previously unavailable. Small-subunit ribosomal DNA analysis confirms they are all related to previously sequenced vampyrellids. An exhaustive screening of the NCBI GenBank database and of 454 sequence data generated by the European BioMarKs consortium revealed hundreds of distinct environmental vampyrellid sequences. We show that vampyrellids are much more diverse than previously thought, especially in marine habitats. Our new isolates, which cover almost the full phylogenetic range of vampyrellid sequences revealed in this study, offer a rare opportunity to integrate data from environmental DNA surveys with phenotypic information. However, the very large genetic diversity we highlight within vampyrellids (especially in marine sediments and soils) contrasts with the paradoxically low morphological distinctiveness we observed across our isolates.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available