4.8 Article

Microbial community gene expression within colonies of the diazotroph, Trichodesmium, from the Southwest Pacific Ocean

Journal

ISME JOURNAL
Volume 3, Issue 11, Pages 1286-1300

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ismej.2009.75

Keywords

Trichdoesmium; metatranscriptomics; aggregate; gene expression; community

Funding

  1. Gordon and Betty Moore Foundation Marine Microbiology Initiative
  2. NSF [EF0424599]
  3. Center for Microbial Oceanography: Research and Education (CMORE)
  4. NSF [OCE0425583]

Ask authors/readers for more resources

Trichodesmium are responsible for a large fraction of open ocean nitrogen fixation, and are often found in complex consortia of other microorganisms, including viruses, prokaryotes, microbial eukaryotes and metazoa. We applied a community gene expression (metatranscriptomic) approach to study the patterns of microbial gene utilization within colonies of Trichodesmium collected during a bloom in the Southwest Pacific Ocean in April 2007. The survey generated 5711-day and 5385-night putative mRNA reads. The majority of mRNAs were from the co-occurring microorganisms and not Trichodesmium, including other cyanobacteria, heterotrophic bacteria, eukaryotes and phage. Most transcripts did not share homology with proteins from cultivated microorganisms, but were similar to shotgun sequences and unannotated proteins from open ocean metagenomic surveys. Trichodesmium transcripts were mostly expressed photosynthesis, N-2 fixation and S-metabolism genes, whereas those in the co-occurring microorganisms were mostly involved in genetic information storage and processing. Detection of Trichodesmium genes involved in P uptake and As detoxification suggest that local enrichment of N through N-2 fixation may lead to a P-stress response. Although containing similar dominant transcripts to open ocean metatranscriptomes, the overall pattern of gene expression in Trichodesmium colonies was distinct from free-living pelagic assemblages. The identifiable genes expressed by Trichodesmium and closely associated microorganisms reflect the constraints of life in well-lit and nutrient-poor waters, with biosynthetic investment in nutrient acquisition and cell maintenance, which is in contrast to gene transcription by soil and coastal seawater microbial assemblages. The results provide insight into aggregate microbial communities in contrast to planktonic free-living assemblages that are the focus of other studies. The ISME Journal (2009) 3, 1286-1300; doi: 10.1038/ismej.2009.75; published online 2 July 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available