4.4 Article

Assimilation Behavior of Quasi-particle Comprising High Alumina Pisolitic Ore

Journal

ISIJ INTERNATIONAL
Volume 54, Issue 12, Pages 2713-2720

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.54.2713

Keywords

high Al2O3 pisolitic ore; quasi-particle; assimilation; primary melt; melt viscosity

Ask authors/readers for more resources

This study aims to utilize the high Al2O3 pisolitic ore in sintering process by designing the quasi-particle where the pisolitic ore is used as nuclei and ultra-fine hematite and magnetite ores are employed as adhering fines. The assimilation behavior between nuclei and adhering fines was investigated through microstructure analysis and it was correlated to sinter quality. When ultra-fine hematite ore was used as adhering fines, the low viscous melt of CaO center dot Fe2O3 was formed in the assimilation. Since this results in the low extent of Al2O3 localization and the porous structure, the detrimental effect of Al2O3 on the strength was not fully controlled. On the other hand, for the ultra-fine magnetite ore, 3CaO center dot Fe2O3 center dot 3SiO(2) melt with high viscosity was predominantly participated in the assimilation. The assimilation was suppressed by the formation of 'interfacial layer'. Due to the dense structure and high extent of Al2O3 localization, the detrimental effect of Al2O3 on strength was reasonably controlled. The quasi-particle comprising high Al2O3 pisolitic ore and ultra-fine magnetite ore showed the equivalent sinter quality to the quasi-particle sample consisting of nuclei of dense hematite and adhering fines of ultra-fine hematite resulting in the high sinter quality.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available