4.4 Article

Design of Composition in (Al/Si)-alloyed TRIP Steels

Journal

ISIJ INTERNATIONAL
Volume 49, Issue 2, Pages 302-311

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.49.302

Keywords

TRIP steel; aluminum; silicon; thermodynamic calculations; phase transformation; carbon content in phases; continuous galvanizing

Funding

  1. Spanish Ministry of Education and Science
  2. Fulbright Scholar Program
  3. BAMPRI

Ask authors/readers for more resources

There is an increasing interest in the progressive substitution of Si by Al in TRIP steels in order to obtain alloys with excellent mechanical properties and improved coatability. In this paper, thermodynamic calculations have been carried out with the help of JMatPrOT (TM) software in order to assess and compare the effects that Si and Al additions exert on the phase transformation, carbon enrichment and alloying element content of phases during continuous galvanizing of multiphase steels. These simulations have provided important implications regarding the optimal combination of Si and Al. It has been found that Al causes a more pronounced increase of A, temperature and a wider extension of the intercritical range than Si. For a constant volume fraction of phases, the carbon content in austenite is similar for Al and Si-alloyed steels. However, ferrite in Al-alloyed is richer in carbon and consequently an increase in its strength could be expected. The hardenability of intercritically annealed austenite has been estimated for alloys with different combinations of Mn, Al and Si. Finally, simulated CCT diagrams predict for Al-alloyed steels a higher amount of new ferrite formed during cooling from intercritical annealing and the need of shorter isothermal holding times at 460 degrees C. However, Si-TRIP steels would need faster cooling rates to prevent pearlite formation and longer isothermal holding times to complete the bainitic transformation and to obtain a microstructure with high retained austenite.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available