4.4 Article

Dynamic coupling of computational fluid dynamics and thermodynamics software: Applied on a top blown converter

Journal

ISIJ INTERNATIONAL
Volume 48, Issue 2, Pages 147-153

Publisher

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.48.147

Keywords

BOF; CFD; thermodynamics; modeling; slag and dynamic simulations

Ask authors/readers for more resources

A novel modeling approach is presented where a computational fluid dynamics software is coupled to thermodynamic databases to obtain dynamic simulations of metallurgical process phenomena. The modeling approach has been used on a fundamental model of a top-blown converter. Reactions between gas-steel, gas-slag, steel-slag and gas-steel-slag have been considered. The results show that the mass transport in the surface area is totally controlled by convection. Also, that a large amount of CO produced during the decarburization might slow down the rate of decarburization in droplets ejected from the bath. For the present simulation conditions reflecting laboratory experiments, it was also seen that the amount of slag (FeO and/or SiO2) created is close to zero, i.e. only gas (CO+CO2) is created as the oxygen jet hits the steel bath. It was also illustrated how an extrapolation of the decarburization rate, sampled from a few seconds of simulation, could be done to get a rough estimate of the carbon content at a later stage in the process as long as the carbon content is relatively high. The overall conclusion is that it is possible to make a dynamic coupling of the Thermo-Calc databases and a CFD software to make dynamic simulations of metallurgical processes such as a top-blown converter.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available