4.5 Article

Effect of particle size on thermomechanical properties of particulate polymer composite

Journal

IRANIAN POLYMER JOURNAL
Volume 22, Issue 11, Pages 853-863

Publisher

SPRINGER
DOI: 10.1007/s13726-013-0184-9

Keywords

Silica sphere; DSC; TGA; XRD; DIC

Ask authors/readers for more resources

Particulate composite materials (PCM) consisting of a matrix reinforced by micro to nano-sized dispersed phase are receiving the attention of designers as a promising futuristic materials. This study unearths the thermal and mechanical behavior of maleic anhydride grafted polypropylene/silica (MA-g-PP/silica) composites for reinforcement ranging from micro- to nano-size. The monodisperse silica spherical particles were used in all the formulations of composites. Further the volume fraction was kept the same in all the compounded thermoplastic composites ranging from 100 nm to 130 mu m in a co-rotating conical twin-screw micro-compounder. The micrographs were obtained from transmission electron microscopy (TEM) and the scanning electron microscopy (SEM). The SEM and TEM results revealed a good dispersion of the silica spheres within the MA-g-PP matrix. The compounded composite materials were injection molded to fabricate tensile test specimens (ASTM D638 type V) and tested for tensile properties. In order to investigate the effect of particle size on crystallite structure of the matrix, the composites were tested on differential scanning calorimeter and X-ray diffraction (WAXD). The thermal stability and degradation kinetics were studied via thermogravimetric analysis. The results show increase in crystallization rate, crystallinity percentage, Young's modulus, strength and thermal stability of MA-g-PP by addition of the silica particles. Further it was observed that the small-sized dispersed phase had better overall thermal and mechanical behavior than its larger sized counterpart.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available