4.5 Article

Relaxation behavior in clay-reinforced polymer nanocomposites

Journal

IONICS
Volume 21, Issue 6, Pages 1561-1575

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11581-014-1336-4

Keywords

Polymer nanocomposites; Mechanical relaxation; Dielectric analysis; AC conductivity renewable energy sources

Ask authors/readers for more resources

The effect of clay reinforcement on dielectric, conductivity, and mechanical relaxation behavior of a polymer clay nanocomposite film is reported. Polymer nanocomposite is composed of three component polymers (polyacrylonitrile) as a host matrix, salt (LiPF6) as conducting species, and clay (sodium montmorillonite) as intercalant. The macroscopic parameters like polymer glass transition temperature and available free mobile charge carriers have been analyzed properly using dynamic mechanical analysis and dielectric analysis. Dielectric analysis indicated distribution of relaxation time as a function of clay concentration, whereas conductivity spectrum exhibited dispersion at lower frequency followed by saturation region at intermediate frequency. The dispersion behavior is related to the electrode polarization attributed to faster ion dynamics. The dielectric and conductivity relaxation are in excellent correlation with mechanical relaxation owing to the changes in glass transition temperature due to polymer-ion-clay interaction. The proposed mechanism is a sequel to the experimental results.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available