4.5 Article

First-principle study on lithium intercalated antimonides Ag3Sb and Mg3Sb2

Journal

IONICS
Volume 21, Issue 5, Pages 1351-1361

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s11581-014-1303-0

Keywords

Li+ battery; First-principle calculation; Structural changes; Electronic properties; Insertion voltage

Funding

  1. All India Council of Technical Education [8023/BOR/RID/RPS-166/2009-10]

Ask authors/readers for more resources

First-principle calculations based on density functional theory have been performed to investigate the negative electrode behaviors, structural changes, and electronic and bonding properties of lithium intercalated antimonides Ag3Sb and Mg3Sb2. Initial intercalation of lithium to orthorhombic Ag3Sb led to form cubic Li2AgSb. Lithium insertion to hexagonal Mg3Sb2 results in cubic LiMgSb. Further insertion of lithium with the intercalated compounds Li2AgSb and LiMgSb results in to the formation of alkali antimonide Li3Sb. The structural transformation of both antimonides Ag3Sb and Mg3Sb2 followed by the insertion of Li+ ends with the formation of Li3Sb with cubic phase. The computed band structures along high symmetry directions of the Brillouin zone, and total and partial density of states clearly illustrate that the intercalation of lithium with Ag3Sb and Mg3Sb2 changes their metallic nature into semiconductor. From the charge density calculations, it is observed that the covalent bond nature in the parent phases Ag3Sb and Mg3Sb2 changed into ionic bond in the Li+ intercalated phases Li2AgSb, LiMgSb, and Li3Sb.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available