4.6 Article

Linearity, Bias, Intrascanner Repeatability, and Interscanner Reproducibility of Quantitative Multidynamic Multiecho Sequence for Rapid Simultaneous Relaxometry at 3 T A Validation Study With a Standardized Phantom and Healthy Controls

Journal

INVESTIGATIVE RADIOLOGY
Volume 54, Issue 1, Pages 39-47

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/RLI.0000000000000510

Keywords

SyMRI; synthetic MRI; quantitative MRI; brain; relaxometry; automatic brain segmentation; myelin estimation

Funding

  1. AMED [JP18lk1010025]
  2. ImPACT Program of Council for Science, Technology, and Innovation (Cabinet Office, Government of Japan)
  3. JSPS KAKENHI [JP16H06280, 16K19852]
  4. Japanese Society for Magnetic Resonance in Medicine
  5. Grants-in-Aid for Scientific Research [16K19852] Funding Source: KAKEN

Ask authors/readers for more resources

Objectives: The aim of this study was to evaluate the linearity, bias, intrascanner repeatability, and interscanner reproducibility of quantitative values derived from a multidynamic multiecho (MDME) sequence for rapid simultaneous relaxometry. Materials and Methods: The NIST/ ISMRM (National Institute of Standards and Technology/ International Society for Magnetic Resonance in Medicine) phantom, containing sphereswith standardized T1 and T2 relaxation times and proton density (PD), and 10 healthy volunteers, were scanned 10 times on different days and 2 times during the same session, using theMDME sequence, on three 3 T scanners fromdifferent vendors. For healthy volunteers, brain volumetry andmyelin estimation were performed based on the measured T1, T2, and PD. The measured phantom values were compared with reference values; volunteer values were compared with their averages across 3 scanners. Results: The linearity of both phantom and volunteer measurements in T1, T2, and PD values was very strong (R2 = 0.973-1.000, 0.979-1.000, and 0.982-0.999, respectively) The highest intrascanner coefficients of variation (CVs) for T1, T2, and PD were 2.07%, 7.60%, and 12.86% for phantom data, and 1.33%, 0.89%, and 0.77% for volunteer data, respectively. The highest interscanner CVs of T1, T2, and PD were 10.86%, 15.27%, and 9.95% for phantom data, and 3.15%, 5.76%, and 3.21% for volunteer data, respectively. Variation of T1 and T2 tended to be larger at higher values outside the range of those typically observed in brain tissue. The highest intrascanner and interscanner CVs for brain tissue volumetry were 2.50% and 5.74%, respectively, for cerebrospinal fluid. Conclusions: Quantitative values derived from the MDME sequence are overall robust for brain relaxometry and volumetry on 3 T scanners from different vendors. Caution is warranted when applying MDME sequence on anatomies with relaxometry values outside the range of those typically observed in brain tissue.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available