4.5 Article

Preclinical analysis of resistance and cross-resistance to low-dose metronomic chemotherapy

Journal

INVESTIGATIONAL NEW DRUGS
Volume 32, Issue 1, Pages 47-59

Publisher

SPRINGER
DOI: 10.1007/s10637-013-9974-3

Keywords

Low-dose metronomic chemotherapy; Maximum tolerated dose chemotherapy; Drug resistance; Prostate cancer; Cyclophosphamide; Docetaxel

Funding

  1. Ontario Institute for Cancer Research through Government of Ontario
  2. Prostate Cancer Canada Clinician-Scientist Award
  3. Canadian Institutes for Health Research (CIHR)
  4. National Institutes of Health, USA [CA-41233]
  5. University of Texas at El Paso URI grant
  6. University of Texas at El Paso IDR2 grant

Ask authors/readers for more resources

Low-dose metronomic chemotherapy is an emerging form of chemotherapy with distinct mechanisms of action from conventional chemotherapy (e.g., antiangiogenesis). Although developed to overcome resistance to conventional chemotherapy, metronomic chemotherapy is subject to resistance on its own. However, there is a paucity of information on mechanisms of resistance, on cross-resistance between metronomic regimens using different cytotoxic drugs, and on cross-resistance between metronomic versus conventional chemotherapy, or versus targeted antiangiogenic therapy. Herein we show that PC-3 human prostate cancer xenografts were sensitive to both metronomic cyclophosphamide and metronomic docetaxel, but resistant to metronomic topotecan. Conventional docetaxel was only moderately active in parental PC-3 and in metronomic cyclophosphamide resistant PC-3 tumors. However, in metronomic cyclophosphamide resistant PC-3 tumors combining conventional docetaxel or bolus cyclophosphamide therapy with continued metronomic cyclophosphamide was superior to each treatment alone. Furthermore, bevacizumab had single-agent activity against metronomic cyclophosphamide resistant PC-3 tumors. Microarray analyses identified altered regulation of protein translation as a potential mechanism of resistance to metronomic cyclophosphamide. Our results suggest that sensitivity to metronomic chemotherapy regimens using different cytotoxic drugs not only depends on shared mechanisms of action such as antiangiogenesis, but also on as yet unknown additional antitumor effects that appear to be drug-specific. As clinically observed with targeted antiangiogenic agents, the continued use of metronomic chemotherapy beyond progression may amplify the effects of added second-line therapies or vice versa. However, metronomic chemotherapy is no different from other systemic therapies in that predictive biomarkers will be essential to fully exploit this novel use of conventional chemotherapeutics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available