4.1 Article

Estimating and including observation-error correlations in data assimilation

Journal

INVERSE PROBLEMS IN SCIENCE AND ENGINEERING
Volume 21, Issue 3, Pages 387-398

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/17415977.2012.712527

Keywords

data assimilation; observation-error covariances; adaptive estimation; observation operator; Shannon entropy

Funding

  1. Office of Naval Research under the National Oceanographic Partnership Program [N000141010149]

Ask authors/readers for more resources

Usually in data assimilation with geophysical systems, the observation-error covariance matrix R is assumed to be diagonal for simplicity and computational efficiency, although there are studies indicating that several types of satellite observations contain significantly correlated errors. This study brings to light the impact of the off-diagonal terms of R in data assimilation. The adaptive estimation method of Li etal., which allows online estimation of the observation-error variance using innovation statistics, is extended to include off-diagonal terms of R. The extended method performs well with the 40-variable Lorenz model in estimating non-diagonal observation-error covariances. Interestingly, the analysis accuracy is improved when the observation errors are correlated, but only if the observation-error correlations are explicitly considered in data assimilation. Further theoretical considerations relate the impact of observing systems (characterized by both R and an observation operator H) on analysis accuracy. This analysis points out the importance of distinguishing between observation-error correlations (i.e. non-diagonal R) and correlated observations (i.e. non-orthogonal H). In general, observations with a non-diagonal R carry more information, whereas observations with a non-orthogonal H carry less information, but it turns out that the combination of R and H is essential: more information is available from positively (negatively) correlated observations with negatively (positively) correlated errors, resulting in a more accurate analysis.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available