4.7 Article

Multigene phylogeny resolves deep branching of Amoebozoa

Journal

MOLECULAR PHYLOGENETICS AND EVOLUTION
Volume 83, Issue -, Pages 293-304

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ympev.2014.08.011

Keywords

Amoebae phylogenomics; Eukaryote-wide phylogeny; Nolandella; Himatismenida; Varipodida; Semiconosia

Funding

  1. Leverhulme Trust [R1008101]
  2. NERC
  3. Russian Foundation for Basic Research [12-04-01835-a]

Ask authors/readers for more resources

Amoebozoa is a key phylum for eukaryote phylogeny and evolutionary history, but its phylogenetic validity has been questioned since included species are very diverse: amoebo-flagellate slime-moulds, naked and testate amoebae, and some flagellates. 18S rRNA gene trees have not firmly established its internal topology. To rectify this we sequenced cDNA libraries for seven diverse Amoebozoa and conducted phylogenetic analyses for 109 eukaryotes (17-18 Amoebozoa) using 60-188 genes. We conducted Bayesian inferences with the evolutionarily most realistic site-heterogeneous CAT-GTR-Gamma model and maximum likelihood analyses. These unequivocally establish the monophyly of Amoebozoa, showing a primary dichotomy between the previously contested subphyla Lobosa and Conosa. Lobosa, the entirely non-flagellate lobose amoebae, are robustly partitioned into the monophyletic classes Tubulinea, with predominantly tube-shaped pseudopodia, and Discosea with flattened cells and different locomotion. Within Conosa 60/70-gene trees with very little missing data show a primary dichotomy between the aerobic infraphylum Semiconosia (Mycetozoa and Variosea) and secondarily anaerobic Archamoebae. These phylogenetic features are entirely congruent with the most recent major amoebozoan classification emphasising locomotion modes, pseudopodial morphology, and ultrastructure. However, 188-gene trees where proportionally more taxa have sparser gene-representation weakly place Archamoebae as sister to Macromycetozoa instead, possibly a tree reconstruction artefact of differentially missing data. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available