4.2 Review

Control of Lacustrine Phytoplankton by Nutrients: Erosion of the Phosphorus Paradigm

Journal

INTERNATIONAL REVIEW OF HYDROBIOLOGY
Volume 93, Issue 4-5, Pages 446-465

Publisher

WILEY
DOI: 10.1002/iroh.200811065

Keywords

algae; dissolved organic nutrients; eutrophication; lake ecosystems; lake management; nitrogen

Ask authors/readers for more resources

Control of lacustrine phytoplankton biomass by phosphorus is one of the oldest and most stable paradigms in modern limnology. Even so, evidence from bioassays conducted by multiple investigators at numerous sites over the last three decades shows that N is at least as likely as P to be limiting to phytoplankton growth. A number of important flaws in the evidence supporting the phosphorus paradigm have contributed to an unrealistic degree of focus on phosphorus as a controlling element. These include insufficient skeptism in interpretation of: 1) the phosphorus: chlorophyll correlation in lakes 2) the results of whole-lake fertilization experiments, and 3) stoichiometric arguments based on total N:total P ratios for inland waters. A new paradigm based on parity between N and P control of phytoplankton biomass in lakes seems more viable than the P paradigm. The new paradigm renews interest in the degree to which plankton communities are molded in composition by small differences in relative availability of N and P, the mechanisms that lead to a high frequency of N limitation in oligotrophic lakes, and the failure of aquatic N-fixers to compensate significantly for N deficiency under most conditions. A new N/P paradigm still must acknowledge that suppression of P loading often will be the most effective means of reducing phytoplankton biomass in eutrophic lakes, even if N is initially limiting.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available