4.7 Article

Targeting MYCN IRES in MYCN-amplified neuroblastoma with miR-375 inhibits tumor growth and sensitizes tumor cells to radiation

Journal

MOLECULAR ONCOLOGY
Volume 9, Issue 7, Pages 1301-1311

Publisher

WILEY
DOI: 10.1016/j.molonc.2015.03.005

Keywords

miR-375; MYCN; IRES; Neuroblastoma; Ionizing irradiation

Categories

Funding

  1. National Institutes of Health [R01 CA123490, R01CA143107]
  2. CURE Childhood Cancer
  3. St. Baldrick's Foundation

Ask authors/readers for more resources

The MYCN oncogene is amplified in 20% of neuroblastomas, leading to its overexpression at both the mRNA and protein levels. MYCN overexpression is strongly associated with advanced disease stage, rapid tumor progression and a worse prognosis. In the present study, we identified microRNA-375 (miR-375) as a negative regulator of MYCN: enforced expression of miR-375 inhibited MYCN-amplified neuroblastoma in vitro and in vivo. Upon searching the website miRbase for possible miR-375 binding sites within the whole MYCN mRNA, we found that the MYCN 5'-UTR had significant sequence complementarity to miR-375, yet no complementary sequences existed within the MYCN 3'-UTR and coding regions. Enforced overexpression of miR-375 efficiently inhibited MYCN mRNA translation and protein synthesis, via an IRES-dependent mechanism. In athymic nude mouse model with human MYCN-amplified neuroblastoma, MYCN downregulation by miR-375 led to inhibition of tumor cell growth and tumorigenicity. In particular, miR-375-regulated inhibition of MYCN translation was enhanced when MYCN-amplified neuroblastoma cells were exposed to stress stimulation, such as ionizing irradiation (IR), resulting in a remarkable increase in the neuroblastoma's sensitivity to lit-induced cell death. Our results identified a novel mechanism by which IRES-dependent translation of MYCN is repressed by miR-375, particularly during cellular stress, highlighting a potential anticancer strategy: the development of miR-375 as a novel therapeutic agent to treat MYCN-amplified neuroblastoma. (C) 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available