4.5 Article

Exotic annual grass invasion alters fuel amounts, continuity and moisture content

Journal

INTERNATIONAL JOURNAL OF WILDLAND FIRE
Volume 22, Issue 3, Pages 353-358

Publisher

CSIRO PUBLISHING
DOI: 10.1071/WF11161

Keywords

cheatgrass; fire risk; invasive plants; wildfire

Categories

Funding

  1. USDA - Agricultural Research Service
  2. Oregon State University

Ask authors/readers for more resources

Many exotic annual grasses are believed to increase wildfire frequency to the detriment of native vegetation by increasing fine fuels and thus, creating a grass-fire cycle. However, information on differences in fuel characteristics between invaded and non-invaded plant communities is lacking, or is based mainly on speculation and anecdotal evidence. We compared fuel biomass, cover, continuity and moisture content in plant communities invaded and not invaded by cheatgrass (Bromus tectorum L.), an exotic annual grass, in 2010 and 2011 in south-eastern Oregon, USA. Annual grass-invaded communities had higher fine fuel amounts, greater fuel continuity, smaller fuel gaps and lower fuel moisture content than did non-invaded plant communities. These conditions would increase the probability that ignition sources would contact combustible fuels and that fires would propagate. Fuel characteristics in the annual grass-invaded communities in our study may also support faster spreading fires. Fuel moisture content was low enough to burn readily more than a month earlier in annual grass-invaded communities than in non-invaded communities, thereby expanding the wildfire season. The cumulative effect of these differences in fuel characteristics between exotic annual grass-invaded and non-invaded plant communities is an increased potential for frequent, large-scale, fast-spreading wildfires. We suggest that research is needed to develop methods to mediate and reverse these changes in fuel characteristics associated with B. tectorum invasion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available