4.6 Article

Integrated Carbon Nanostructures for Detection of Neurotransmitters

Journal

MOLECULAR NEUROBIOLOGY
Volume 52, Issue 2, Pages 859-866

Publisher

SPRINGER
DOI: 10.1007/s12035-015-9233-z

Keywords

Multiwalled carbon nanotubes; Carbon nanofibers; Dopamine; Electrochemistry; Diamond-like carbon

Categories

Ask authors/readers for more resources

Carbon-based materials, such as diamond-like carbon (DLC), carbon nanofibers (CNFs), and carbon nanotubes (CNTs), are inherently interesting for neurotransmitter detection due to their good biocompatibility, low cost and relatively simple synthesis. In this paper, we report on new carbon-hybrid materials, where either CNTs or CNFs are directly grown on top of tetrahedral amorphous carbon (ta-C). We show that these hybrid materials have electrochemical properties that not only combine the best characteristics of the individual building blocks but their synergy makes the electrode performance superior compared to conventional carbon based electrodes. By combining ta-C with CNTs, we were able to realize electrode materials that show wide and stable water window, almost reversible electron transfer properties and high sensitivity and selectivity for detecting dopamine in the presence of ascorbic acid. Furthermore, the sensitivity of ta-C + CNF hybrids towards dopamine as well as glutamate has been found excellent paving the road for actual in vivo measurements. The wide and stable water window of these sensors enables detection of other neurotransmitters besides DA as well as capability of withstanding higher potentials without suffering from oxygen and hydrogen evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available