4.0 Article

Identification of Potential Serum Biomarkers in Mercury-Treated Mice Using a Glycoproteomic Approach

Journal

INTERNATIONAL JOURNAL OF TOXICOLOGY
Volume 32, Issue 5, Pages 368-375

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1177/1091581813504969

Keywords

mercury; serum protein; glycoprotein; label-free quantification; biomarkers

Funding

  1. Korea Food and Drug Administration
  2. Korean Reach Institute of Standard Science [12011019]

Ask authors/readers for more resources

Mercury is a well-recognized health hazard and a deleterious environmental contaminant. Exposure to mercury can cause neurotoxic manifestations, nephrotoxicity, and immune function alterations; however, the mechanisms and related proteins responsible for these effects are still unclear. Our goal is to understand the relationship between the toxicity of mercury and the proteins affected by this toxic heavy metal and to define biomarkers for mercury intoxication. Two different forms of mercury, organic methylmercury or inorganic mercury sulfide, were orally administered to the mice for 4 weeks. To reduce complexity of the serum proteome, we enriched glycoproteins from mice serum with lectin concanavalin A resin, and the tryptic peptides of the purified glycoproteins were subjected to nanoultra performance liquid chromatography-Quadrupole time-of-flight for identification and label-free quantification. In this study, we characterized approximately 209 proteins from mice serum, and, among them, 21 proteins were differentially expressed in organic methylmercury-treated mice serum compared with the control group. Two proteins, serum amyloid P component (SAP) and inter -trypsin inhibitor heavy chain 4 (ITI-H4), were upregulated in organic methylmercury-treated mice and confirmed with different doses of both types of mercury by Western blot analysis. Results of immunohistochemistry also confirmed the validity of SAP and ITI-H4 as biomarker candidates for organic methylmercury exposure. Findings of this study may assist in understanding the relationship between toxicity of mercury and upregulated proteins in mouse serum. Furthermore, the proteins identified here might be used as biomarker candidates in mercury intoxication.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available