4.7 Article

Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 85, Issue -, Pages 93-103

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2014.06.015

Keywords

Plate heat exchanger; Nanofluids; Experiment; CFD analysis; Flow characteristics; Optimization

Ask authors/readers for more resources

Numerical investigation of heat transfer and fluid flow in a single pass counter flow chevron corrugated-plates plate heat exchanger considering nanofluids (CeO2 and Al2O3) as homogeneous mixtures has been presented in this paper using the Commercial CFD software, ANSYS FLUENT. The required thermophysical properties of the nanofluid were measured and used in the CFD model through UDF (User Defined Function) commercial CFD software ANSYS/FLUENT. Individual optimum concentration of CeO2/water and Al2O3/water nanofluids yield maximum heat transfer improvement has experimentally determined and then CFD simulation has been done with those concentrations to obtain the temperature, pressure, and velocity fields. The results of numerical simulation were compared with experimental data in order to verify the accuracy of the homogeneous model. Validation of the CFD model suggests that considering nanofluid a homogeneous mixture, simulation can be performed to predict the plate heat exchanger performance with reasonable accuracy. CFD simulation shows that corrugation pattern of the plate develops turbulence and vortices of fluid which results in high heat transfer rates. (C) 2014 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available