4.7 Article

Inverse estimation of spatially and temporally varying heating boundary conditions of a two-dimensional object

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 49, Issue 9, Pages 1669-1679

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2010.04.009

Keywords

Inverse heat conduction; Numerical solution; Conjugate gradient method

Ask authors/readers for more resources

In many dynamic heat transfer situations, the temperature at the heated boundary is not directly measurable and can be obtained by solving an inverse heat conduction problem (IHCP) based on measured temperature or/and heat flux at the accessible boundary. In this study, IHCP in a two-dimensional rectangular object is solved by using the conjugate gradient method (CGM) with temperature and heat flux measured at the boundary opposite to the heated boundary. The inverse problem is formulated in such a way that the heat flux at heated boundary is chosen as the unknown function to be recovered, and the temperature at the heated boundary is computed as a byproduct of the IHCP solution. The measurement data, i.e., the temperature and heat flux at the opposite boundary, are obtained by numerically solving a direct problem where the heated boundary of the object is subjected to spatially and temporally varying heat flux. The robustness of the formulated IHCP algorithm is tested for different profiles of heat fluxes along with different random errors of the measured heat flux at the opposite boundary. The effects of the uncertainties of the thermophysical properties and back-surface temperature measurement on inverse solutions are also examined. (C) 2010 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available