4.7 Article

Instability of Taylor-Couette flow between concentric rotating cylinders

Journal

INTERNATIONAL JOURNAL OF THERMAL SCIENCES
Volume 47, Issue 11, Pages 1422-1435

Publisher

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2007.12.012

Keywords

Instability; Transition; Taylor-Couette flow; Rotating cylinders; Energy gradient; Energy loss; Critical condition

Ask authors/readers for more resources

The energy gradient theory is used to study the instability of Taylor-Couette flow between concentric rotating cylinders. This theory has been proposed in our previous works. In our previous studies, the energy gradient theory was demonstrated to be applicable for wall-bounded parallel flows. It was found that the critical value of the energy gradient parameter K-max at turbulent transition is about 370-389 for wall-bounded parallel flows (which include plane Poiseuille flow, pipe Poiseuille flow and plane Couette flow) below which no turbulence occurs. In this paper, the detailed derivation for the calculation of the energy gradient parameter in the flow between concentric rotating cylinders is provided. The calculated results for the critical condition of primary instability (with semi-empirical treatment) are found to be in very good agreement with the experiments in the literature. A possible mechanism of spiral turbulence generation observed for counter-rotation of two cylinders can also be explained using the energy gradient theory. The energy gradient theory can serve to relate the condition of transition in Taylor-Couette flow to that in plane Couette flow. The latter reasonably becomes the limiting case of the former when the radii of cylinders tend to infinity. It is our contention that the energy gradient theory is possibly fairly universal for analysis of flow instability and turbulent transition, and is found valid for both pressure and shear driven flows in parallel and rotating flow configurations. (C) 2007 Elsevier Masson SAS. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available