4.5 Article

Apigenin induces caspase-dependent apoptosis by inhibiting signal transducer and activator of transcription 3 signaling in HER2-overexpressing SKBR3 breast cancer cells

Journal

MOLECULAR MEDICINE REPORTS
Volume 12, Issue 2, Pages 2977-2984

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2015.3698

Keywords

breast cancer; human epidermal growth factor receptor 2; apigenin; apoptosis; signal transducer and activator of transcription 3; vascular endothelial growth factor

Funding

  1. Basic Science Research Program through National Research Foundation of Korea (NRF) - Ministry of Education, Science and Technology [NRF-2012R1A1A3004797]
  2. Korean Medicine R&D project of the Ministry of Health and Welfare [B120014]

Ask authors/readers for more resources

Phytoestrogens have been demonstrated to inhibit tumor induction; however, their molecular mechanisms of action have remained elusive. The present study aimed to investigate the effects of a phytoestrogen, apigenin, on proliferation and apoptosis of the human epidermal growth factor receptor 2 (HER2)-expressing breast cancer cell line SKBR3. Proliferation assay, MTT assay, fluorescence-activated cell sorting analysis, western blot analysis, immunocytochemistry, reverse transcription-polymerase chain reaction and ELISA assay were used in the present study. The results of the present study indicated that apigenin inhibited the proliferation of SKBR3 cells in a dose- and time-dependent manner. This inhibition of growth was accompanied by an increase in the sub-G(0)/G(1) apoptotic population. Furthermore, apigenin enhanced the expression levels of cleaved caspase-8 and -3, and induced the cleavage of poly(adenosine diphosphate ribose) polymerase in SKBR3 cells, confirming that apigenin promotes apoptosis via a caspase-dependent pathway. Apigenin additionally reduced the expression of phosphorylated (p)-janus kinase 2 and p-signal transducer and activator of transcription 3 (STAT3), inhibited CoCl2-induced vascular endothelial growth factor (VEGF) secretion and decreased the nuclear localization of STAT3. The STAT3 inhibitor S31-201 decreased the cellular proliferation rate and reduced the expression of p-STAT3 and VEGF. Therefore, these results suggested that apigenin induced apoptosis via the inhibition of STAT3 signaling in SKBR3 cells. In conclusion, the results of the present study indicated that apigenin may be a potentially useful compound for the prevention or treatment of HER2-overexpressing breast cancer.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available