4.5 Article

Computational analysis identifies invasion-associated genes in pituitary adenomas

Journal

MOLECULAR MEDICINE REPORTS
Volume 12, Issue 2, Pages 1977-1982

Publisher

SPANDIDOS PUBL LTD
DOI: 10.3892/mmr.2015.3564

Keywords

invasion; pituitary adenomas; microarray

Ask authors/readers for more resources

Pituitary adenomas are considered to be benign tumours. However, they can infiltrate surrounding tissues, which may cause a failure of complete removal during surgical resection. Thus far, no molecular biomarkers have been identified, which are able to reliably predict the behaviour of this type of tumour. In the present study, a list of differentially expressed genes in invasive pituitary adenomas was obtained using a computational bioinformatics analysis on the DNA microarray expression profiles. The gene expression datasets of a total of 16 samples were retrieved from the National Center for Biotechnology Information Gene Expression Omnibus database. The gene set enrichment analysis was later conducted on the significantly (FDR<0.05) differentially expressed genes. A total of 194 genes were identified as differentially expressed. The pathway impact analysis revealed that cell adhesion molecules may be vital in the progression of pituitary adenoma invasion. A total of six genes, claudin 7, contactin associated protein-like 2, integrin alpha 6, junctional adhesion molecule 3, protein tyrosine phosphatase, receptor type C and cadherin-associated protein alpha 1 were identified as molecular biomarkers for pituitary adenoma invasion. The present study identified six novel molecular biomarkers, which may be used for diagnostic or therapeutic purposes. However, further experimental investigations are required to validate the present findings.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available