4.4 Article

Cheminformatics Based Machine Learning Models for AMA1-RON2 Abrogators for Inhibiting Plasmodium falciparum Erythrocyte Invasion

Journal

MOLECULAR INFORMATICS
Volume 34, Issue 10, Pages 655-664

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/minf.201400139

Keywords

Cheminformatics; Drug discovery; Machine learning; Malaria; Plasmodium

Ask authors/readers for more resources

Malaria remains a dreadful disease by putting every year about 3.4 billion people at risk and resulting into mortality of 627 thousand people worldwide. Existing therapies based upon Quinines and Artemisinin-based combination therapies have started showing resistance, pressing the need for search of anti-malarials with different mechanisms of action. In this respect erythrocyte invasion by Plasmodium is immensely crucial, as being obligate intracellular parasite it must invade host cells. This process is mediated by interaction between conserved Apical Membrane Antigen (AMA1) and Rhoptry Neck (RON2) protein, which is compulsory for successful invasion of erythrocyte by Plasmodium and manifestation of the disease Malaria. Here, using the physicochemical properties of the compounds available from a confirmatory high throughput screening, which were tested for their disruption capability of this crucial molecular interaction, we trained supervised classifiers and validated their robustness by various statistical parameters. Best model was used for screening new compounds from Traditional Chinese Medicine Database. Some of the best hits already find their use as anti-malarials and the model predicts that an essential part of their effectiveness is likely due to inhibition of AMA1-RON2 interaction. Pharmacophoric features have also been identified to ease further designing of possible leads in an effective way.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available