4.5 Article

Microbe-associated immunomodulatory metabolites: Influence on T cell fate and function

Journal

MOLECULAR IMMUNOLOGY
Volume 68, Issue 2, Pages 575-584

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.molimm.2015.07.025

Keywords

meta-MAMPs; Rapamycin; Soraphen A; Immunometabolism; T cell fate; Fatty acid synthesis; Glycolysis

Funding

  1. [SFB900]

Ask authors/readers for more resources

During the past two decades, a growing interest surrounding the interaction between microbe-associated molecular patterns (MAMPs) and pattern recognition receptors has occurred. This attention is now driven alongside bacterial-derived metabolites, which impact immune cell differentiation and function. Hence, this review introduces the term meta-MAMP as a means to classify the microbial derived-metabolites, which influence the immune response by affecting specific cellular processes. We discuss two prominent examples of meta-MAMPs: the first, rapamycin (isolated from Streptomyces), was discovered in the 1970s and since then has been thoroughly studied. The second, soraphen A (isolated from Myxobacteria), was discovered in the early 1990s but only recently identified as a promising immunomodulator. Both meta-MAMPs are similar in their remarkable capacity to modulate T cell fate by targeting key metabolic pathways triggered upon T cell activation. In this context, we highlight the progress made in the field of immunometabolism and the possibility of modulating metabolic pathways such as cellular fatty acid metabolism as a strategy for immunomodulation. We focus on the use of microbial metabolites as auspicious agents for T cell fate modulation. (C) 2015 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available