4.6 Article

Deformation gradients for continuum mechanical analysis of atomistic simulations

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 46, Issue 2, Pages 238-253

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2008.08.036

Keywords

Continuum; Finite deformation; Mechanics; Strain; Atomistic simulation

Categories

Funding

  1. Department of Energy's National Nuclear Security Administration [DE-AC04-94AL85000]

Ask authors/readers for more resources

We present an expression developed for calculating an atomic-scale deformation gradient within atomistic simulations. This expression is used to analyze the deformation fields for a one-dimensional atomic chain, a biaxially stretched thin film containing a surface ledge, and a FCC metal subject to indentation loading from a nanometer-scale indenter. The analyses presented show that the metric established here is consistent with the continuum mechanical concept of deformation gradient (which is known to have a zero curl for compatible deformations) in most instances. However, our metric does yield non-zero values of curl for atoms near loaded geometric inhomogeneities, such as those that form the ledges themselves and those beneath or adjacent to the indentation contact region. Also, we present expressions for higher order gradients of the deformation field and discuss the requirements for their calculation. These expressions are necessary for linking atomistic simulation results with advanced continuum mechanics theories such as strain gradient plasticity, thereby enabling fundamental, atomic-scale information to contribute to the formulation and parameterization of such theories. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available