4.6 Article

Nonlinear wave propagation in damaged hysteretic materials using a frequency domain-based PM space formulation

Journal

INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES
Volume 46, Issue 1, Pages 165-180

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijsolstr.2008.08.025

Keywords

Nonlinear wave propagation; Multiscale; PM space; Meshless

Categories

Ask authors/readers for more resources

In this work, a new and simple numerical approach to simulate nonlinear wave propagation in purely hysteretic elastic solids is presented. Conversely to classical time discretization method, which fully integrates the nonlinear equation of motion, this method utilizes a first-order approximation of the nonlinear strain in order to separate linear and nonlinear contributions. The problem for the nonlinear displacements is then posed as a linear one in which the solid is enforced with nonlinear forces derived from the linear strain. in this manner, a frequency analysis can be easily conducted, leading directly to a well-known frequency spectrum for the nonlinear strain. A mesoscale approach known as Preisach-Mayergoyz space (PM space) is used for the chacterization of the nonlinear elastic region of the solid. A meshless element free Galerkin method is implemented for the discretized equations of motion. Nevertheless, a mesh-based method can be still used as well without loss of generality. Results are presented for bidimensional isotropic plates both in plane stress and in plane strain subjected to harmonic monotone excitation. (c) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available